
[bookmark: _Toc104439705][bookmark: _Toc112689024][bookmark: _Toc112689319][bookmark: _Toc112774641][bookmark: _Toc113357225][bookmark: _Toc116639152][bookmark: _Toc131163522][bookmark: _Toc97108982][bookmark: _Toc100782814][bookmark: _Toc100983192]SA WG2 Meeting #161	S2-2402959
[bookmark: _Hlk91755148][bookmark: _Hlk92114058]Feb. 26th- March 01st, 2024; Athens, Greece 					
	
Source: 	China Mobile
Title: 	TR 23.700-54 KI#2.1 Solution: Proxying IP, TCP and Ethernet via MPQUIC steering functionality
Document for: 	Approval
Agenda Item: 	19.13
[bookmark: _Hlk91784932]Work Item / Release:	FS_MASSS / Rel-19
Abstract of the contribution: This document proposes a solution to address one key issue for ATSSS_Ph4, namely the KI#2.1, on how to use an integrated MPQUIC architecture to steer, switch and split non-UDP traffic (MPQUIC-based SSS for UDP is in Rel-18 already). This solution references and applies both a few new IETF RFCs and some on-going IETF drafts (that have been adopted and actively worked currently in IETF WGs) revolving around the HTTP/3 based proxy for IP, TCP, Ethernet.

1	Discussion
The key issue #2.1 of ATSSS_Ph4 discusses how MPQUIC could be used to steer, switch and split (so-called SSS) non-UDP traffic, in addition to SSS’ing UDP-traffic (as having been standardized in Rel-18). In the Rel-18 ATSSS, for the support of UDP traffic via MPQUIC, the HTTP/3 proxy functionality is introduced whose fundamental method ‘CONNECT’ [RFC-9110] is extended thru the protocol ‘connect-udp’[RFC-9298]. The UDP proxying payload is encapsulated via the HTTP Datagram payload [RFC-9297]. Since HTTP/3 [RFC-9114] is based on QUIC, then QUIC protocol is naturally included and also its datagram extension [RFC-9221] is adopted. Further, ATSSS is about the traffic communication over, possibly, two paths, i.e., the 3GPP access path and the non-3GPP access path. So, to achieve the effect of dual-path traffic transport for ATSSS, the multipath QUIC technology [IETF-multipath-quic] was included in Rel-18. The two endpoints selected for the HTTP/3 proxy connection are UE and UPF, with HTTP proxy client running on UE and HTTP proxy server on UPF. While we could argue possibly this MPQUIC steering functionality is seemingly convoluted, it is indeed a feasible solution for SSS’ing UDP traffic.
This key issue #2.1 raises the complexity challenges of the field deployment of both MPTCP and MPQUIC, as currently faced by operators, and suggests studying how to enable and enhance, if possible, the MPQUIC steering functionality to support the SSS for TCP, IP and Ethernet traffic, apart from UDP.
This solution targets at easing the operators’ deployment burden by supplementing and enhancing the Rel-18 based MPQUIC functionality to support the traffic proxying for IP, TCP and Ethernet.

2	Proposal
It is proposed to capture the solution proposal for the inclusion in the TR 23.700-54.	

[bookmark: _Toc517082226]* * * * First change * * * *
* * * * (Only new references are listed here) * * * *
2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
……
[RFC-9110]	IETF RFC 9110: " HTTP Semantics".
[RFC-9114]	IETF RFC 9114: " Hypertext Transfer Protocol Version 3 (HTTP/3)".
[RFC-9221]	IETF RFC 9221: " An Unreliable Datagram Extension to QUIC".
[RFC-9297]	IETF RFC 9297: " HTTP Datagrams and the Capsule Protocol ".
[RFC-9298]	IETF RFC 9298: " Proxying UDP in HTTP ".
[RFC-9484]	IETF RFC 9484: "Proxying IP in HTTP".
[IETF-multipath-quic]	draft-ietf-quic-multipath: "Multipath Extension for QUIC".
[HTTP3-proxy-tcp]	draft-ietf-httpbis-connect-tcp: " Template-Driven HTTP CONNECT Proxying for TCP".
[HTTP3-proxy-ethernet]	draft-ietf-masque-connect-ethernet: " Proxying Ethernet in HTTP".
Editor's note:	The above document cannot be formally referenced until it is published as an RFC.

* * * * 2nd change * * * *

6	Solutions
[bookmark: _Toc500949099][bookmark: _Toc97269611][bookmark: _Toc104439706][bookmark: _Toc112689025][bookmark: _Toc112689320][bookmark: _Toc112774642][bookmark: _Toc113357226][bookmark: _Toc116639153][bookmark: _Toc131163523]6.0	Mapping of Solutions to Key Issues
Table 6.0-1: Mapping of Solutions to Key Issues
	Solutions
	
	
	

	
	<Key Issue #1>
	<Key Issue #2.1>
	<Key Issue #3>

	
	
	
	

	Solution #x:
Proxying IP, TCP and Ethernet via MPQUIC steering functionality
	
	
X
	

	……
	
	
	

	
	
	
	

	

* * * * 3rd change * * * *
* * * * (all new texts) * * * *

6.x	Solution #x: Proxying IP, TCP and Ethernet via MPQUIC steering functionality
6.x.1	Description
[bookmark: _Toc500949101]This solution targets for the key issue #2.1 of ATSSS_Ph4, i.e., how MPQUIC could be used to steer, switch and split (so-called SSS) non-UDP traffic, in addition to SSS’ing UDP-traffic (as having been standardized in Rel-18).
In the Rel-18 ATSSS, for the support of UDP traffic via MPQUIC, the HTTP/3 proxy functionality is introduced whose fundamental method ‘CONNECT’ [RFC-9110] is extended thru the protocol ‘connect-udp’[RFC-9298]. The UDP proxying payload is encapsulated via the HTTP Datagram payload [RFC-9297]. Since HTTP/3 [RFC-9114] is based on QUIC, then QUIC protocol is naturally included and also its datagram extension [RFC-9221] is adopted. Further, ATSSS is about the traffic communication over, possibly, two paths, i.e., the 3GPP access path and the non-3GPP access path. So, to achieve the effect of dual-path traffic transport for ATSSS, the multipath QUIC technology [IETF-multipath-quic] was included in Rel-18. The two endpoints selected for the HTTP/3 proxy connection are UE and UPF, with HTTP proxy client running on UE and HTTP proxy server on UPF.

6.x.1.1	MPQUIC for UDP: Architecture & Encapsulation Flow
In order to enhance and extend the MPQUIC steering functionality to support non-UDP traffic, we have to first dig out thoroughly how the current Rel-18 MPQUIC architectural design impacts the encapsulation flow of UDP data.
Fundamentally, the whole flow and all associated details are demonstrated in the following five (5) steps:
1. Proxy UDP in HTTP/3:
· This step conforms to the RFC-9298 [RFC-9298], i.e., proxy UDP in HTTP/3. According to the RFC, HTTP/3 utilize the “method=CONNECT” and the “protocol=connect-udp”.
· The format of UDP-proxying HTTP Datagram payload is defined as:
UDP Proxying HTTP Datagram Payload {
 Context ID (i),
 UDP Proxying Payload (..),
 }
Here, the ‘UDP proxying payload’ is the original UDP traffic that is supposed to be transported via MPQUIC at the end. The format indicates the first layered encapsulation structure of the UDP data.
· Based on the section #5 of the RFC-9298, UDP packets are encoded using HTTP Datagrams payload with the Context ID field set to zero, with which the UDP Proxying Payload field contains the unmodified payload of a UDP packet.
· The ‘UDP Proxying HTTP Datagram Payload’ will be encapsulated in HTTP/3 Datagram.

2. HTTP/3 Datagram
· This step conforms to the RFC-9297 [RFC-9297], i.e., HTTP Datagram.
· The section #2.1 of the RFC defines the format of HTTP/3 Datagram:
HTTP/3 Datagram {
 Quarter Stream ID (i),
 HTTP Datagram Payload (..),
 }
Here, the ‘HTTP Datagram Payload’ is from the above step-1, and ‘Quarter Stream ID’ for QUIC stream-ID.
· The ‘HTTP/3 Datagram’ will be encapsulated via the RFC-9221 (QUIC unreliable Datagram), with the integration of the IETF WG draft, Multipath-QUIC [IETF-multipath-quic].

3. Multipath QUIC:
· This step conforms to the IETF QUIC WG draft, ‘draft-ietf-quic-multipath’ [IETF-multipath-quic].
· HTTP/3 is based on QUIC. So, in theory, the immediate flow-step after the above step-2 should be revolving around the QUIC encapsulation. However, because the MPQUIC is comprised of 2 paths, one 3GPP access-path and one non-3GPP access-path, the application HTTP/3 (after the step-2) must invoke the IETF multipath-QUIC protocol to set up multiple QUIC transport paths (actually, only 2 in this context).
· An individual path in a QUIC-multipath is determined by the IP 4-tuple of source and destination IP address as well as source and destination port: <src-ip, src-port, dst-ip, dst-port>. While, the multipath-QUIC uses the same packet header formats as QUIC version 1 to minimize the difference between multipath and non-multipath traffic being exposed on wire, the QUIC multipath extension requires the use of non-zero ‘connection ID’ to differentiate traffic over different paths. According to TS 23.501 [23.501], the ‘MPQUIC link-specific multipath’ addresses/prefixes can be used for the settings of path endpoints.
· One particular point we want to point out is that, according the section #2 of the IETF multipath-QUIC draft, an application using Multipath QUIC will typically need additional algorithms to handle the number of active paths and how they are used to send packets. As these differ depending on the application's requirements, their specification is out of scope of this IETF document. Thus, this suggests that, in the case of MPQUIC steering functionality, HTTP/3 be the so-called application and it has to specify its own algorithm for (multi-) path scheduling.

4. QUIC datagram
· This step conforms to the RFC-9221 [RFC-9221], i.e., QUIC Unreliable Datagram.
· Since the multipath-QUIC protocol uses the same packet-header format as the QUIC version 1, the step-3 will not have any impact on the packet format encapsulation. Therefore, the QUIC datagram frame as defined in RFC-9221 shall directly encapsulate the ‘HTT/3 Datagram’ [RFC-9297] as referenced in the step-2:
DATAGRAM Frame {
 Type (i) = 0x30..0x31,
 [Length (i)],
 Datagram Data (..),
 }
Here, the field ‘Datagram data’ contains the ‘HTTP/3 datagram’ as shown in the step-2. Moreover, a Datagram-Frame belongs to a QUIC connection as a whole and are not associated with any stream ID at the QUIC layer
· Until then, we can see the layered-structure of all encapsulations as: the original UDP payload, the HTTP/3 datagram, and the QUIC datagram. In the next step, we will talk about how to map an encapsulated QUIC datagram to a QoS flow that has been selected based on QoS rules (23.501 Clause 5.32.6.2.2).

5. QoS flow (as mapped with a UDP flow)
· The TS 23.501 clause 5.32.6.2.2 specifies that a QoS flow, with an (ATSSS) steering mode, will be selected for each UDP flow, covering uplink and downlink directions.
· The TS 23.501 clause 5.32.4 (QoS support for MA PDU session) states that a QoS Flow is not associated with specific access, i.e., being access agnostic. So, the same QoS is supported when the traffic is distributed over 3GPP and non-3GPP accesses (depending on the steering mode in ATSSS policy (for UE) and N4 rules (for UPF). The SMF shall provide the same QFI in 3GPP and non-3GPP accesses so that the same QoS is supported in both accesses.
· Correspondingly, the section #7.4 of the IETF ‘multipath-QUIC’ draft [IETF-multipath-quic] talks about the packet scheduling: Multipath-QUIC implementations need to include a packet scheduler that decides the path over which the next QUIC packet will be sent. Most frames can be sent and received on any active path. The scheduling is a local decision, based on the preferences of the application and the implementation.
· Since the (IETF) scheduling is dependent on application and/or implementation, the distribution algorithm of packets over both paths (of a multipath QUIC) can be considered seamlessly together with the ATSSS steering mode (via ATSSS-rules/UE and N4-rules/UPF).

Recently, there are some new IETF RFCs and/or WG drafts that elucidate how to use HTTP/3 to proxy IP, TCP and Ethernet traffic. While they might use different HTTP upgrade token, they all provide certain ways to proxy (i.e., encapsulate) non-UDP traffic over HTTP/3 datagram. Therefore, depending the nature of the proxied traffic, IP, TCP vs. Ethernet, only one or two steps (of the previous 5-step flow) need to be enhanced.

6.x.1.2	MPQUIC for IP: Architecture & Encapsulation Flow
This enhancement conforms to the RFC-9484 [RFC-9484], which only needs to enhance the step-1 of 6.x.1.1.

Similar to how UDP is proxied via HTTP/3 [RFC-9298], this RFC-9484 allows transmitting arbitrary IP packets. It allows an HTTP client to create an IP tunnel through an HTTP/3 server that acts as an IP proxy. The RFC-9484 updates the RFC-9298. The RFC defines a new HTTP upgrade token ‘connect-ip’, and utilizes the ‘method=CONNECT’ and the ‘protocol=connect-ip’. Just like how UDP-proxy defines its format in RFC-9298, it defines the format as follows:
IP Proxying HTTP Datagram Payload {
 Context ID (i),
 Payload (..),
 }
where the field ‘Payload’ contains an IP packet. This datagram is encapsulated with ‘HTTP Datagram’ [RFC-9297] (the step-2 of 6.x.1.1) and then further with ‘QUIC datagram’ [RFC-9221] (the step-4 of 6.x.1.1). The multipath-QUIC part (of the step-3 of 6.x.1.1) is same. Note that RFC-9484 states that IP packets are supposed to be encoded using HTTP Datagrams with the Context ID set to zero, with which the ‘Payload’ field contains a full IP packet (from the IP Version field until the last byte of the IP payload).

One thing we want to emphasize is, while the RFC-9484 focuses on proxying IP over HTTP, it also provides a way via the constructed URI to extend the support. The section #4.6 (of the RFC-9484) explains that the variable ‘ipproto’ in a URI might contain an Internet Protocol Number, as defined in IANA-registry. It can be TCP, UDP, or any IP protocol. This variable ‘ipproto’ represents an allowable next header value carried in IP headers that are directly sent in HTTP/3 Datagrams. Once a client (e.g., UE) chooses to restrict a given request to a specific IP protocol, an IP proxy can leverage this information to optimize its resource allocation (i.e., applicable to TCP, UDP, etc.). For example, the ‘ipproto=TCP’ can help optimize the handle of TCP handshake, congestion control, etc.

But, in our opinion, this feature is just ‘add-on’. That means, we suggest to prioritize more the RFCs and/or IETF WG drafts specifically for a protocol, unless the non-existence or immaturity of the protocol drafts forces to choose the more generic proxy-IP mechanism. E.g., the proxy-UDP in RFC-9298 should be prioritized more than the proxy-IP in RFC-9484.

6.x.1.3	MPQUIC for TCP: Architecture & Encapsulation Flow
This enhancement conforms to the IETF WG I.D. ‘draft-ietf-httpbis-connect-tcp’ [HTTP3-proxy-tcp], which, in principle, only needs to enhance the step-1 of 6.x.1.1.

Thanks to some problems in the classic HTTP CONNECT (in RFC-9110 section #9.3.6) [RFC-9110], this WG draft defines a new HTTP upgrade token ‘connect-tcp’ to handle TCP specific proxy issues via HTTP/3. It utilizes the ‘method=CONNECT’ and the ‘protocol=connect-tcp’.

However, TCP is much more complicated (than UDP), e.g., connection-oriented, TCP handshake hanging for several minutes, etc. Thus, the equivalence ‘TCP Proxying HTTP Datagram Payload’ as in UDP and IP cases has not yet been defined. Unfortunately, this does indicate the immaturity of this TCP-proxy draft [HTTP3-proxy-tcp]. Therefore, we suggest to reference the RFC-9484 (Proxy IP in HTTP) currently until the TCP-proxy draft matures later.

6.x.1.4	MPQUIC for Ethernet: Architecture & Encapsulation Flow
This enhancement conforms to the IETF WG I.D. ‘draft-ietf-masque-connect-ethernet’ [HTTP3-proxy-ethernet], which, in principle, needs to enhance both the step-1 and the step-5 of 6.x.1.1.

This IETF draft targets at proxying layer-2 (i.e., Ethernet) over HTTP. The I.D. allows an HTTP client to create Layer 2 Ethernet tunnel through an HTTP server to an attached physical or virtual Ethernet segment. It defines a new HTTP upgrade token ‘connect-ethernet’ to handle Ethernet proxy via HTTP/3. It utilizes the ‘method=CONNECT’ and the ‘protocol=connect-ethernet’. Just like how the UDP-proxy [RFC-9298] and the IP-proxy [RFC-9484] define their datagram formats, it defines the format as follows:
Ethernet Proxying HTTP Datagram Payload {
 Context ID (i),
 Payload (..),
 }
The field ‘Payload’ contains an Ethernet frame. This datagram is encapsulated with ‘HTTP Datagram’ [RFC-9297] (the step-2 of 6.x.1.1) and then further with ‘QUIC datagram’ [RFC-9221] (the step-4 of 6.x.1.1). The multipath-QUIC part (of the step-3 of 6.x.1.1) is same. Note this I.D. states that Ethernet frames are supposed to be encoded using HTTP Datagrams with the Context ID set to zero, with which the ‘Payload’ field contains a full Ethernet frame packet (from the MAC destination field until the last byte of the Frame check sequence (FCS) field).

At the beginning of the clause, we said the step-5 (of 6.x.1.1) also needs to be enhanced. It is because the TS 23.501 clause 5.32.6.2.2 (MPQUIC Functionality) says MPQUIC may be enabled for an MA PDU Session with type IPv4, IPv6 or IPv4v6, when both the UE and the network support this functionality. The MPQUIC functionality shall not be enabled when the type of the MA PDU Session is Ethernet. Given the gradual maturity of this IETF WG draft, we believe we can remove the restriction for Rel-19.

Further, the TS 23.501 clause 5.6.10.2 (support of Ethernet PDU session type) states that ‘For UL traffic the UE strips the preamble and frame check sequence (FCS) from the Ethernet frame’, which conflicts with the convey of the FCS field as required in this IETF draft [HTTP3-proxy-ethernet].

Editor's note:	How ‘the support of Ethernet PDU session type’ aligns with the IETF ‘Ethernet-proxy’ draft for the handling of Ethernet frame is FFS.

6.x.1.5	Integrated MPQUIC architecture to proxy IP, UDP, TCP & Ethernet
When we combine the clauses 6.x.1.1 (UDP), 6.x.1.2 (IP), 6.x.1.3 (TCP) and 6.x.1.4 (Ethernet) together, we can come up with the following integrated MPQUIC architecture to support proxying UDP, IP, TCP and Ethernet traffic, as shown in the Figure 6.x.1.5:

· MPQUIC for UDP (6.x.1.1): 	Conform to the Rel-18 ATSSS
· [bookmark: _GoBack]MPQUIC for IP (6.x.1.2):	Enhance the step-1 of 6.x.1.1 (may accommodate TCP/UDP)
· MPQUIC for TCP (6.x.1.3):	Enhance the step-1 of 6.x.1.1
· MPQUIC for Ethernet (6.x.1.4): Enhance the step-1/step-5 of 6.x.1.1

[image:]
Figure 6.x.1.5: Integrated MPQUIC Architecture

[bookmark: _Toc97269612][bookmark: _Toc104439707][bookmark: _Toc112689026][bookmark: _Toc112689321][bookmark: _Toc112774643][bookmark: _Toc113357227][bookmark: _Toc116639154][bookmark: _Toc131163524]6.x.2	Procedures
There is genuinely not much procedural difference to apply the MPQUIC steering functionality to IP, TCP & Ethernet traffic than to UDP traffic. The enhancements are more on how to provision the extended ATSSS-capability to UE (via ATSSS-rules) and UPF (via N4-rules). In rel-18, the ATSSS-capability is scoped only toward ‘MPQUIC for UDP’, while in FS_MASSS (rel-19), the capability extends to accommodate ‘MPQUIC for IP, for TCP and for Ethernet’. The enhancement will be in TS 23.501 clause 5.32.6.2.2.
Another enhancement is to address the restriction of the supported MA PDU session types by MPQUIC. The TS 23.501 clause 5.32.6.2.2 says MPQUIC may be enabled for an MA PDU Session with type IPv4, IPv6 or IPv4v6, when both the UE and the network support this functionality. The MPQUIC functionality shall not be enabled when the type of the MA PDU Session is Ethernet. This needs to be addressed.
For the three components composing the MPQUIC steering functionality as in TS 23.501 clause 5.32.6.2.2:
1. QoS flow selection & steering mode selection: the support of UDP flow needs to be extend to the support of IP, TCP and Ethernet flow;
2. HTTP/3 layer: In addition to the RFC-9298 for ‘proxy-UDP’, a new RFC-9484 for ‘proxy-IP’ and two IETF WG drafts, one for ‘proxy-TCP’ and the other for ‘proxy-Ethernet’, are required to be included.
3. QUIC layer: no change.

Also, for the 7 steps (i ~ vii) as in TS 23.501 clause 5.32.6.2.2:
i) No change.
ii) Extend ‘UDP flow’ to also cover ‘IP, TCP & Ethernet’
iii) Extend the proxy type ‘connect-udp’ to also cover ‘connect-ip, connect-tcp & connect-ethernet’.
iv) No change
v) No change
vi) Extend the HTTP/3 CONNECT support ‘UDP’ to also cover ‘IP, TCP & Ethernet’
vii) No change

[bookmark: _Toc326248711][bookmark: _Toc510604409][bookmark: _Toc97269613][bookmark: _Toc104439708][bookmark: _Toc112689027][bookmark: _Toc112689322][bookmark: _Toc112774644][bookmark: _Toc113357228][bookmark: _Toc116639155][bookmark: _Toc131163525]6.x.3	Impacts on services, entities and interfaces
UE:
-	Enhance ATSSS-capability to support MPQUIC steering UDP, IP, TCP & Ethernet.
-	Receive ATSSS-rules from SMF (via AMF)
-	Apply the MPQUIC functionality to steer UDP, IP, TCP & Ethernet UL traffic
PCF:
-	Take ATSSS policy decisions
-	Generate PCC rules that would support the MPQUIC steering functionality for UDP, IP, TCP & Ethernet.
SMF:
-	Receive PCC rules for MA PDU sessions
-	Generate ATSSS rules for UE and N4 rules for UPF: supporting MPQUIC steering for UDP, IP, TCP & Ethernet
UPF:
-	Receive N4-rules from SMF
-	Apply the MPQUIC functionality to steer UDP, IP, TCP & Ethernet DL traffic

* * * * End of changes * * * *

3GPP
image1.png

